Algebra 1 Honors Prep Packet

Attached, you will find the basic learning targets from Pre-Algebra that you are expected to know **BEFORE** you start Honors Algebra 1. For each topic addressed, this packet contains review examples, properties, definitions, and video tutorial QR codes followed by practice problems. This material must be mastered in order for you to be successful in Honors Algebra 1. You will be assessed at the beginning of course on what is covered in this packet. Since this material is designed as a review, you are responsible for completing this packet on your own. The packet may be graded at the start of the school year to assess your knowledge and effort. Be sure to **SHOW ALL OF YOUR WORK and submit it at the start of class!**

Name:				

Target Checklist

Targe	t 1: Arithmetic Properties
	Order of Operations
	Arithmetic Properties
	Distributive Property
	Properties of Real Numbers
	Exponents
	Square Roots
Targe	t 2: Factors and Multiples
	Factors and Multiples
	Prime and Composite Numbers
	Prime Factorization
	Least Common Multiple (LCM)
	Greatest Common Factor (GCF)
Targe	t 3: Reading and Interpreting Data
	Stem and Leaf Plots
	Picture Graphs, Bar Graphs, and Dot Plots
	Frequency Tables and Histograms
	Number Patterns
Targe	t 4: Measurement
	Area of Rectangles and Triangles
	Perimeter
	Volume of a Rectangular Prism
	Converting between measurements (imperial and metric) *Chem
Targe	t 5: Fractions
	Fractions Intro
	Fractions on the Number Line
	Equivalent Fractions
	Comparing Fractions
	Common Denominators
	Adding and Subtracting Fractions (Word Problems)
	Multiplying Whole Numbers and Fractions
	Multiplication as Scaling

	Multiplying and Dividing Fractions Multiplying Mixed Numbers
	Converting Fractions to Decimals
_	Percents
Targe	t 6: Decimals
	Rounding Decimals
	Converting Decimals to Fractions to Percents
	Consumer Math Problems
Targe	t 7: Ratio, Rates, Proportions, and Scientific Notation
	Unit Rates
	Cross Multiplication
	Solving Proportions to scale problems
	Putting Numbers in Scientific Notation
Targe	t 8: Equations and Expressions
	Evaluating Expressions
	Solving 1-Step Equations
	Solving 2-Step and Multi-Step Equations

Target 1: Arithmetic Properties

□ Order of Operations (PEMDAS)

Directions: Simplify each expression using the Order of Operations

1.
$$12 - [(8 + 7) \cdot 2] \div 6$$

2.
$$7 + 54 \div 3(2)$$

3.
$$24 - 4^2 \cdot 3 + 15$$

4.
$$\frac{(7-2^2)+17}{-14+2.5}$$

5.
$$|-7| + (53 - 3^4) \div \sqrt{16}$$

6.
$$2 \cdot 3^2 + (-4)^2 - 3|-5|$$

□ Arithmetic Properties

Commutative Property of Addition or Multiplication Associative Property of Addition or Multiplication Identity Property of Addition or Multiplication Distributive Property Inverse Property of Addition or Multiplication Zero Property

Directions: Define the Properties used in the examples below.

1.
$$4 + (x + y) = (4 + x) + y$$

$$2. \ \ 2(x+6) = 2x+12$$

3.
$$(2y) \cdot 1 = 2y$$

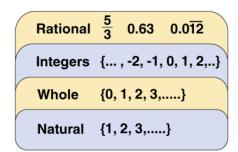
4.
$$(m + n) + 3 = (n + m) + 3$$

5.
$$(6 - x) \cdot 0 = 0$$

7. What is the multiplicative inverse of
$$\frac{2}{3}$$
?

□ Distributive Property

Use the distributive property to simplify the following expressions:


$$1. - 6(x - 5) =$$

1.
$$-6(x-5) =$$
 _____ 2. $\frac{1}{2}(2x-4) =$ _____

3.
$$2x(y + 3z) =$$

3.
$$2x(y + 3z) =$$
 _____ 4. $2(3x - 7) - 4(x - 1) =$ _____

□ Properties of Real Numbers

Irrational $\sqrt{3}$ π 0.10100110...

Directions: Name the Subsets of Real Numbers each number belongs to:

- -7 : ______ 2/3 : _____

Re

- π : ______ .3333 : _____
- - 1:_____

Exponents

Directions: Expand the following expressions then evaluate.

$$(-3)^3 \rightarrow \underline{\hspace{1cm}} \cdot \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$(-2)^2 \rightarrow \underline{\hspace{1cm}} \cdot \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

□ Square Roots

Directions: Evaluate the following expressions. Round to the nearest hundredth if necessary.

$$\sqrt{9}$$
 = _____ Is 9 a perfect square? Yes or No

- $-\sqrt{25}$: _____ Is 25 a perfect square? Yes or No
- $\sqrt{2}$: _____ Is 2 a perfect square? Yes or No
- $-\sqrt{10}$: _____ Is 10 a perfect square? Yes or No

Target 2: Factors and Multiples

☐ Factors and	l Multipl	es
---------------	-----------	----

Factors: numbers that divide evenly into a given number.

Directions: Find the factors of each.				
	1) 32:			
	2) 52:			
	3) 116:			
	<i>4</i>) 256:			

Multiples: count by the given number.

Directions: Write the next 4 multiples of the following numbers.

- 5) 7: _____
- 6) 17: _____
- 7) 6:_____

	rime Number: a numb Composite Number: a n	•		
	ons: Prove that following n can be factored. Circle prin	•	composite by	y showing
	8) 27 :		prime or co	omposite
	9) 31:		prime or co	mposite
	10) 59 :		prime or co	omposite
	11) 117 :		prime or co	omposite
r	Prime Factorization: breambers. Ons: Find the prime factoring 48 /\		ng numbers:	nly prime Scan or Click
48 :		105 :		
14)	94 /\	15)	360 /\	
94 :		360 :		

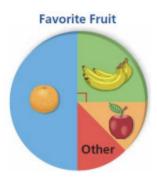
☐ Least Common Multiple multiple of both (or all)	(LCM): The smallest number that a is a numbers:
Directions: Find the LCM:	Scan or Click
16) 12 and 18 :	
17) 14 and 16 :	
18) 6, 8, and 10 :	
☐ Greatest Common Facto evenly into both (or all)	r (GCF): the largest number that divides numbers:
Directions: Find the GCF:	Scan or Click
19) 16 and 18 :	
20) 24 and 40 :	
21) 27, 33, and 51 :	

Target 3: Reading and Interpreting Data

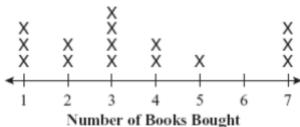
Directions: Read each and answer each question using the graphs provided.

☐ Stem and Leaf Plots

Plant Heights

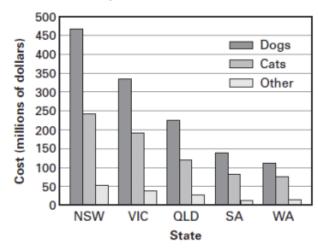

Stem	Le	eaf						
0	1 0	2	4	5	6	8	9	
1	0	1	1	5	7			
2	2 6	5						
3	6							

Key: 1 | 5 = 15 inches

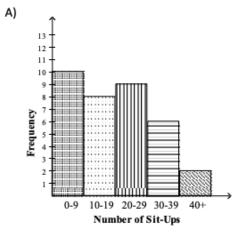

- 1. What is the mean plant height? Round to the nearest integer.
- 2. What is the median plant height? _____
- 3. What is the range? _____
- 4. What is the mode? _____

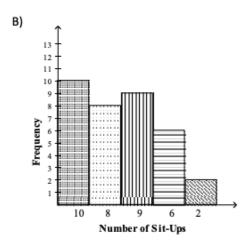
☐ Picture Graphs, Bar Graphs, and Line Plots

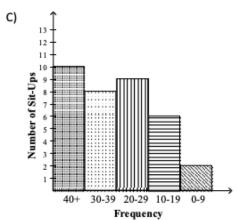
5. The circle graph above shows the results of a survey on favorite fruit. If the survey included 80 students, how many students chose bananas as their favorite?

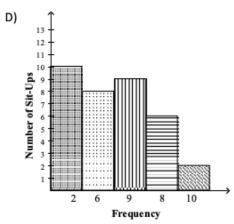

The line plot below shows the number of books individual customers bought at a bookstore one day.

- 6. What was the total number of customers who bought more than 3 books?
- 7. How many customers bought 1-3 books? _____

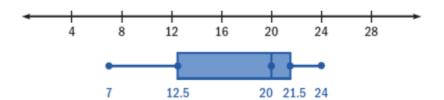

Australian Expenditures on Pet Care (1996)




- 8. Which state has the highest total spending on dog care?
- 9. Which state spent approximately \$150 million on cat and other expenditures? _____


☐ Frequency Tables and Histograms

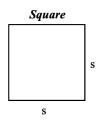
Number of Sit-ups Students Can Do in 1 Minute					
Number 0-9 10-19 20-29 30-39 40+					
Frequency	10	8	9	6	2



- 10. Which Histogram represents the frequency table? _____
- 11. What interval has the most amount of students? _____
- 12. How many students can do 30-39 sit-ups in a minute? _____

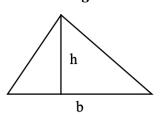
☐ Box-and-Whisker Plots and Number Patterns

- 13. What is the Minimum? _____
- 16. What is Q1? _____
- 14. What is the Maximum? _____
- 17. What is Q3? _____
- 15. What is the Median? _____
- 18. What is the IQR? _____
- 19. What number is missing in the pattern? 12, 16, _____, 24, 28.
- 20. What is the next ordered pair in the pattern? (10, 5), (8, 4), (6, 3), (4, 2), _____.

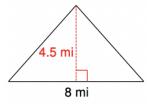

Target 4: Measurement

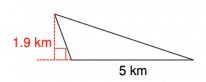
□ Area of Rectangles and Triangles

Area is measure in square units $(m^2, ft^2, in^2, etc.)$


 $A = s^2$

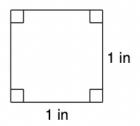
 $A = 1 \cdot w$


Triangle

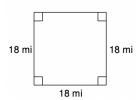

 $A = \frac{1}{2}b \cdot h$

Directions: Find the area of the given figures below. INCLUDE UNITS:

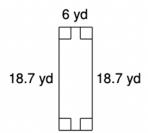
1.


2.

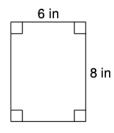
Area:_____


Area:_____

3.


Area:_____

4.

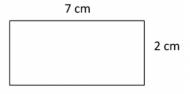


Area:

5.

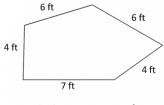
6.

Area:

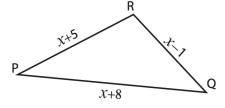

Area:

□ Perimeter

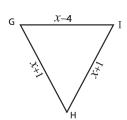
Add up all of the side lengths in each figure (units are measured in the same units).


Directions: Find the perimeter of the figures below. INCLUDE UNITS:

7.


Perimeter = ____ cm

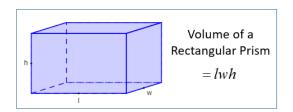
8.



Perimeter = _____ ft

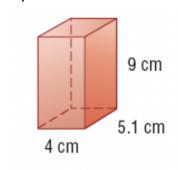
9.

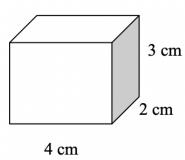
10.


Perimeter = _____

Perimeter = _____

□ Volume of a Rectangular Prism


Refer to the diagram below for finding the volume of a Rectangular Prism:



Directions: Find volume. Volume is measured in cubic units (m^3 , ft^3 , in^3 , etc.)

16)

17)

Volume:_____

Volume:_____

□ Converting between measurements (Imperial and Metric)

US Customary System (Imperial) Metric System

Distance	12 inches = 1 foot 5280 feet = 1 mile 3 feet = 1 yard
Fluid Volume	8 fl. oz = 1 cup 2 cups = 1 pint 2 pints = 1 quart 4 quarts = 1 gallon
Weight	16 oz = 1 pound 2000 lbs = 1 ton
Time	60 seconds = 1 min 60 min = 1 hour 24 hours = 1 day 7 days = 1 week 365 days = 1 year

Distance	1 meter = 100 centimeters 1 centimeter = 10 millimeters 1 kilometer = 1000 meters
Fluid Volume	1 liter = 1000 milliliters
Weight	1 kilogram = 1000 grams

Directions: Convert each measurement into the given unit

Target 5: Fractions

Directions: Answer each question. All final answers should be fully simplified

□ Fractions Intro

1. What is .4 in simplified fraction form?

- 2. What is 1.25 in simplified mixed number form? _____
- 3. What is 2.5 in simplified improper fraction form? _____

□ Fractions on the Number Line

4. Use the number line below to plot and label the following numbers:

$$\frac{1}{2}$$
, $\frac{3}{2}$, $-1\frac{3}{4}$, $\frac{7}{2}$, $-\frac{22}{4}$, $-\frac{2}{3}$

□ Equivalent Fractions

Directions: Fill in the blank to make equivalent fractions.

5.
$$\frac{3}{2} = \frac{3}{12}$$

6.
$$\frac{2}{3} = \frac{2}{15}$$

5.
$$\frac{3}{2} = \frac{3}{12}$$
 6. $\frac{2}{3} = \frac{3}{15}$ 7. $\frac{6}{4} = \frac{3}{10}$

□ Comparing Fractions

Directions: Use a < or > to compare the fractions.

8.
$$\frac{3}{2}$$
 — $\frac{22}{12}$

8.
$$\frac{3}{2}$$
 $\frac{22}{12}$ 9. $-\frac{2}{3}$ $\frac{7}{8}$

10.
$$\frac{8}{9}$$
 _ $\frac{7}{8}$

□ Common Denominators

11. What is the least common denominator of $\frac{1}{7}$ and $\frac{2}{3}$?

12. What is the least common denominator of $\frac{2}{5}$ and $\frac{8}{9}$?

□ Adding and Subtracting Fractions (Word Problems - No Calc!)

- 13. A pizza is covered with multiple toppings. $\frac{1}{3}$ of the pizza is covered in mushrooms, $\frac{1}{8}$ of the pizza is covered with onions, and the rest of the pizza is covered with only cheese. What fraction of the pizza is covered with only cheese?
- 14. Tucker baked $2\frac{1}{7}$ pizzas and ordered another $\frac{5}{7}$ of a pizza from his local pizzeria. If he shares $1\frac{3}{8}$ of his pizza with his friends, how much pizza does he have left over?

□ Multiplying Whole Numbers and Fractions (No Calc!)

15.
$$(\frac{3}{4})(5) =$$

15.
$$(\frac{3}{4})(5) =$$
 16. $(\frac{2}{3})(12) =$

□ Multiplying and Dividing Fractions (No Calc!)

17.
$$(\frac{1}{4})(\frac{3}{8}) =$$
 18. $(\frac{2}{3})(\frac{4}{7}) =$

18.
$$(\frac{2}{3})(\frac{4}{7}) =$$

19.
$$\frac{3}{4} \div \frac{2}{3} =$$
 20. $\frac{1}{3} \div \frac{2}{7} =$

20.
$$\frac{1}{3} \div \frac{2}{7} =$$

□ Multiplying and Dividing Mixed Numbers (No Calc!)

21.
$$(1\frac{1}{4})(2\frac{2}{5}) =$$

21.
$$(1\frac{1}{4})(2\frac{2}{5}) =$$
 22. $(2\frac{2}{3})(3\frac{4}{7}) =$

23.
$$2\frac{3}{4} \div 1\frac{2}{3} =$$

23.
$$2\frac{3}{4} \div 1\frac{2}{3} =$$
 24. $4\frac{1}{3} \div 1\frac{2}{7} =$

□ Converting Fractions to Decimals

- 25. What is $\frac{2}{5}$ in decimal form? _____
- 26. What is $\frac{1}{3}$ in decimal form?

□ Percents

- 27. What is .06 in percent form? _____
- 28 . What is 2.3 in percent form? _____
- 29 . What is $\frac{3}{5}$ in percent form? _____
- 30 . What is $1\frac{3}{4}$ in percent form? _____

Target 6: Decimals

mark-up?

□ Rounding Decimals 1) Round 1,540.865 to the nearest tenth: _____ 2) Round 182.899 to the nearest hundredth: _____ □ Converting Decimals to Percentages 3) Convert 0.05 to a percent: _____ 4) Convert 0.0125 to a percent: ______ 5) Convert 2.60 to a percent: _____ □ Consumer Math Problems 6) A pair of shoes that sells for \$79 is discounted 15%. How much money was saved?

7) A store produces a jacket for \$65 but sells it at \$70.20. What is the percent

8)	Jenny and her friends go to dinner. Their bill was \$60.50. They want to leave a 20% tip. How much money should they leave?
9)	Using the formula I = Prt, find how much interest you would make on an account that invests \$2000 at a rate of 5.5% for 6 years.
	et 7: Ratio, Rates, Proportions, and Scientific Notation Unit Rates
	Directions: Answer each question and show your work.
	1. A skydiver falls 144 feet in three seconds. How far does the skydiver fall per second?
	2. It costs \$3.99 for 25 fl. oz. of detergent or \$6.99 for 90 fl. oz. Which is a better buy?
	3. A 16 oz package of brown rice costs 79 cents and a 32 oz package of white rice costs \$3.49. Which package is a better deal?

□ Cross Multiplication

4.
$$\frac{b}{9} = \frac{10}{3}$$

$$5.\frac{7}{5} = \frac{6}{n}$$

6.
$$\frac{9}{6} = \frac{a}{10}$$

7.
$$\frac{4x}{8} = \frac{6}{2}$$

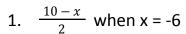
□ Solving Proportions to scale problems

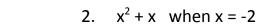
8. A model plane has a scale of 1 in : 6 yd. If the model plane is 3 in tall then how tall is the real plane in yards? *Hint draw a picture to help*

9. If a 6 ft tall tent casts a 10 ft long shadow then how long is the shadow of a pole that is 9 ft tall? *Hint draw a picture to help*

10. A telephone booth that is 8 feet tall casts a shadow that is 4 feet. If a nearby flagpole is 14 ft tall then how long is its shadow? *Hint draw a picture to help*

□ Putting Numbers in Scientific Notation




- 11. What is 340,000 in Scientific Notation?
- 12. What is 0.00056 in Scientific Notation? _____
- 13. What is 45,320,000 in Scientific Notation?
- 14. What is 0.0000023 in Scientific Notation? _____

Target 8: Equations and Expressions

Directions: Evaluate each expression.

3.
$$6y - 5x$$
 when $x = 2$ and $y = -1$

3. 6y - 5x when x = 2 and y = -1 4.
$$|x - y| - y^2$$
 when x = 1 a d y = -3

☐ Solving 1-Step Equations

1. Solve for x: x - 3 = -5

2. Solve for y: 0.9 = y + 2.8

3. Solve for m: $m - (-\frac{2}{5}) = \frac{3}{5}$

4. Solve for n: $\frac{n}{5} = -3$

5. Solve for z: 1.3z = 5.2

6. Solve for t: $\frac{3}{5}t = 6$

□ Solving 2-Step and Multi-Step Equations

1. Solve for x: 2x + 5 = 19

2. Solve for y: $\frac{y}{3} - 1 = 5$

- 3. Solve for a: 3(a + 1) = 16 4. Solve for x: 1.25x 4.2 = 10.75